
AD-Ai53 986 A PRIMAL SIMPLEX APPROACH Ta PURE PROCESSING NETWORKS i/i
(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES
C H CHEN ET AL. FEB 85 CCS-496 N8914-81-C-0236

UNCLASIFEDF/E9/ N

mmhmhhhmhhuo
EhmhhmhohEohhI

IIT

17-11,-

IJ40~~ 111112-

1.8

II1111 11125

MICROCOPY RESOLUJTION TEST CHART

NON B1,1141IF~ ALI ('I TANDL,q, -A

S%

) n(1 AT N T F P~ r'FNq!

Research Report CCS 496

A PRIMAL SIMPLEX APPROACH TO PURE
PROCESSING NETWORKS

by

C.-H. Chen

M. Engquist

Ln CENTER FOR
CYBERNETIC

STUDIES
The University of Texa

Austin ,exas 78712

DTIC
ELECT

* SMAY 22985j

MSTRIBUTION 5TATE,' 1.NTA

lAppoved Icx public r.eoia '
Distribution Unlimited

Research Report CCS 496

A PRIMAL SIMPLEX APPROACH TO PURE
PROCESSING NETWORKS

by

C.-H. Chen
M. Engquist

February 1985

M,'. MAY 2 2 1985*0

This paper was partly supported by ONR Contract N00014-81-C-0236, ONR
Contract NOOO14-82-K-0295, USARI Contract MDA,903-83-K-0312 and a grant
from the University Research Institute at ThelUniversity of Texas.

* Reproduction in whole or in part is permitted for any purpose of the
United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director

College of Business Administration 5.202
The University of Texas at Austin

Austin, Texas 78712-1177
(512) 471-1821

I~~~~~~ i.. :3.r M:r:N rA
Approved fc public releom.]

*__ Distribution Unlimited

" " - i i :/ . .:" "

-A PRIMAL SIMPLEX APPROACH TO PURE PROCESSING NETWORKS

BY

C.-H. Chen, M. Engquist

Abstract

Pure processing network problems are minimum cost flow problems
in which the flow entering or leaving a node may be constrained to do
so in given proportions. In this paper, new theoretical results
concerning pure processing networks are developed, and based on these
results, two new primal simplex variants are presented. One of these
variants has been implemented and tested against a general purpose
linear programming code. A large class of problems is identified for
which the specialized code is an order of magnitude faster than the
general purpose code. • , -•

Key Words:

Networks
Processing Networks
Linear Programming

J97

f ,

"I 'w
lo-... - ..- . --. • ..- .. ,,-.,-. ..- ., -v .-..: .-. .,.- ->. --?.-:. ,:+.-.

.. ' . . ,, + ' . " " , " - ., . + .- - "- -. . ." N

1. INTRODUCTION

Network problems which allow proportional flow restrictions on the arcs

entering or leaving some nodes are called processing network problems.

Processing network structure arises in a number of application areas

including energy modelling [20], assembly models [28], and management of

working capital [7]. A processing network model used in manpower planning

is described in [4,5]. Processing network terminology was introduced by

Koene [19], and a survey of applications is contained in [19].

In this paper we consider pure processing network problems. For such

problems, conservation of flow holds both at nodes and along arcs. A given

linear programming (LP) problem can be transformed to pure processing

network form in three steps which are roughly described as: create a new

row in the LP tableau which is the negative of the sum of the original rows,

scale the columns of the new tableau so that the positive components of each

column sum to one, and split each non-network column into two new columns

containing its positive and negative parts, respectively. These two new

columns are forced to correspond to equal variables by the addition of a new

constraint. Further details of the transformation are found in [19]. Since

the transformation allows any LP problem to be formulated as a pure

processing network, it seems unlikely that efficient solution techniques

based entirely on the graph traversal methods used to solve pure network

problems are possible. Rather, the appropriate strategy is to handle the

0 pure network structure using graphical methods while the non-network part of

the problem is handled separately. Basis partitioning in the primal simplex

algorithm is the technique we use for this purpose. The proportional flow

S

2

restrictions can be formulated as non-network variables (side variables) or

as non-network constraints (side constraints). We find the side variable

formulation preferable since it leads to a working basis of lower dimension.

For one of the simplex variants we discuss, the dimension of the working

basis equals the number of basic side variables which, for some problems,

can be quite small. On the other hand, when the number of basic side

variables increases to some point as yet unknown, our partitioning approach

will break even with general purpose LP solution methods.

Pure network problems have been solved 150-200 times faster than the

general purpose LP code, APEX III, using a specialized primal simplex code

[13]. This has motivated the study of pure network problems with side

constraints or side variables. The papers [11,121 show that problems with a

single side constraint can be solved 25-50 times faster than APEX III. For

problems having multiple side constraints or side variables, computational

results have been quite limited, and those which are available are less

encouraging. Primal partitioning methods for pure network problems with

multiple side constraints have been investigated by Klingman and Russell

[18] and Chen and Saigal [61. A recent computational study by All et al.

[1] showed that on multicommodity network flow problems, a primal

partitioning code ran about three times faster than MINOS [25] on problems

with up to 31 binding linking constraints.

A primal partitioning algorithm for pure network problems with both

0 side constraints and side variables was developed by Glover and Klingman

[14]. In [14], an implementation of the side constraint case is discussed

along with preliminary computational results. McBride [22] has extended the

methods of [14] to the solution of generalized network problems with both

side variables and constraints. An implementation of this algorithm was

tested against MINOS with the result that the specialized code was about

five times faster overall. Four of the problems solved in McBride's study

were generalized processing network problems. Although such problems are

quite similar to those studied in the present paper, they allow gains or

losses of flow along arcs and are somewhat more difficult to solve. On

these generalized processing network problems, the specialized code ran

about two and one-half times faster than MINOS.

Koene [19] proposed special primal algorithms for both pure and

generalized processing networks based on a side variable formulation. These

algorithms have not been implemented. Engqulst and Chen [8,9] developed a

primal partitioning approachwhlch used some of the ideas of [19] applied to

a side constraint formulation, and they presented preliminary computational

comparison of a specialized code with MINOS. It should be noted that the

algorithm of [8,9] differs considerably from the primal simplex variants

introduced in the present paper. McBride [21] developed a hybrid primal

partitioning technique for generalized processing networks which starts the

problem solution using the side constraint formulation and switches to the

side variable formulation one column at a time as the corresponding side

constraints attain feasibility. Two test problems were solved for which the

hybrid approach proved beneficial compared to either the side variable or

side constraint methods.

-4' - : • -.,, i '_. '

-F.

2. PROBLEM FORMULATION

In this paper, we utilize the processing network structu re shown in

Figure 1. Node v is known as a splitting node, and associated with each arc

(v,w) of Figure I is a value av , 0 < a < 1. The flow on arc (v,w) is

required to equal a times the flow entering node v. For pure processing

networks, conservation of flow holds at node v, and thus

t

Z=I1
zavw(z)

21

must hold. It is convenient to associate a 1 with splitting node v.vv

-(2)

0

Figure 1. A Splitting Node

We note that splitting nodes are represented graphically as squares

while other nodes are shown as circles. The arcs of Figure I leaving node v

are called processing arcs, while the arc entering node v is termed an

allocation arc. The nodes w(i), w(2), ..., w(t) along with the splitting

node are called processing nodes.

In the LP formulation of the pure processing network problem (2.3) -

(2.6), the processing arcs are represented by a single column, called a

processing column, in the constraint matrix. This column has the form

a in row v
vv

-avw(z) in row w(z), z 1 1, 2, ..., t (2.2)

0 elsewhere.

A network arc is represented by a network column which contains only two

nonzero values, a I and a -1. The row containing the I corresponds to the

tail node of the arc, while the row containing the -1 corresponds to the

head node. The column corresponding to an allocation arc is called an 0

allocation column.

In C19], the definition of pure processing networks includes the

structure formed when the direction of the arcs in Figure 1 is reversed.- By

complementing flows with respect to their capacities and adjusting supply

values appropriately, this structure can be reduced to the one shown in

Figure 1. Thus, there is no loss of generality in restricting attention to

the structure of Figure 1.

4"S ,-" " - i - .- - . .- -. ." " .

6
The pure processing network problem (problem PPN) is

minimize N:N + c x p (2.3)

subject to: ANXN + Apxp - b (2.4)

0 xN h N (2.5)

0 :ix 'n (2.6)

The mxn matrix AN is the node arc incidence matrix for a pure network N,

while the mxp matrix A contains the processing columns. Vector b contains

the supply values, while cN and cp contain unit costs for the vectors of

decision variables xN and xp. The capacities are the components of the

simple upper bound vectors hN and h.. In Figure 1, if arc (u,v) corresponds

to column r of AN and the corresponding processing column (2.2) is column s

of A., then it is assumed that the capacities ChNI r and [hI s are equal.

We assume, without loss of generality, that a slack arc and artificial

arcs with Big-M costs have been introduced into the network N so that it is

connected and the matrix AN has rank m. We also assume that each row of

[ANP A p contains at most one non-zero component from the columns of Ap.

The latter assumption is for notational convenience only and does not

* restrict the application of our methods.

6

0

An example PPN problem is shown in Figure 2. This problem is

uncapacitated, and the arc labels in rectangles are costs. Costs on the

processing arcs are zero. Arc labels in semicircles are used to indicate

the a values of (2.2).
vw

F0

Figure 2. A PPN Example

3. BASIS STRUCTURE

Until further notice, we let B denote a basis matr.x for PPN.

column. corresponding to the slack arc, which contains a single nonzero

value, must be contained in B. Otherwise, the rows of B sum to zero. Let

B' be the matrix obtained from B by omitting the slack arc column. Let r be

the number of columns of B from All. Th1e next theorem and its proof are

taken from .

Theorem 1. The partial network of N corresponding to columns of B' from A N

consists of r 1 trees if and only if B contains r columns from Ap.

Proof. The number of arcs in a tree is one less than the number of nodes.

This fact implies that m-(r+l) network columns from B' correspond to r 1

trees and vice versa, and the result follows.

B = [B 1 , B 2]

-w.ere B. contains the columns of B from AN and B2 contains r columns of B

from A The r+1 trees whose existence is guaranteed by Theorem 1 are

termed basis trees. The slack arc is incident to one of these basis trees

o and the basis tree with the slack arc adjoined is called the basis quasi-

tree. For the remaining r basis trees, root nodes are chosen arbitrarily.

The resulting r rooted trees are called the rooted basis trees. In Figure

01 3, the basis quasi-tree and the rooted basis trees of an optimal basis for

the problem of Figure 2 are shown. Optimal flows are shown on the arcs. We

0

6 . . . _ , . , i, ' . _ 2 . : . -.

9
note that one of the rooted basis trees is a single node in this example.

F2

,.~
00 c-

3.33

3

126.67

9

Figure 3. Oltima1 Basis Trees

S

S

10

We assume that the rows of [A, A,] are arranged so that the last r

rows correspond to the roots of the rooted basis trees. The first m-r rows

of B1 form a matrix T while the remaining r rows form matrix D. Likewise,

the first m-r rows of B2 form a matrix C while the last r rows form matrix

F. The resulting partition is

a . (3.2)
D F

We note that T corresponds graphically to a collection of quasi-trees.

In order to state the next theorem, we temporarily drop the assumption

that B is a basis for PPN. Instead, we assume that B contains m columns of

[A A] including the slack arc column and that B is partitioned as in
N' P

(3.1) and (3.2) so that T corresponds to a collection of quasi-trees.

We define the matrix Q by

Q = F - DT- C. (3.3)

Theorem 2. 3 is a basis matrix for PPN if and only if Q is nonsingular.

Proof. It follows that

T 0 _'C (3.4)
L

0

t. ".

0

where I denotes identity matrices of appropriately chosen dimension. From

(3.4) we obtain

det B - det T det Q. (3.5)

Since T corresponds to a collection of quasi-trees, det T ; 0. The result

follows directly.

Theorems 1 and 2 suggest the following approach to obtaining a basis

matrix B for PPN: m-r columns of A N which form r trees and one quasi-tree

are chosen along with r columns of A such that the resulting matrix Q is

nonsingular.

* For a basis B, the matrix Q of (3.3) is called the working basis.

Before proceeding with an investigation of working basis structure, we make

a preliminary definition. Suppose that the rooted basis trees are numbered

from I to r. The ith tree indicator function is defined to be 1 on the

nodes of rooted basis tree i and 0 on the nodes of all other basis trees.

We further suppose that the numbering of the rooted basis trees is done so

that tree i corresponds via its root node to the ith row D of matrix D.
i

Lemma 1. The ith tree indicator function restricted to non-root nodes

1*equals -D.iT_

Proof. The matrix T represents a number.of quasi-trees. Suppose that one

of these quasi-trees, say T, is selected. In the first case, the slack arc

of T and the corresponding component of D is -1. Forward substitution

yields the desired result. In the second case, the slack arc is oppositely

.

0

12

directed, the corresponding component of D. is 1, and forward substitution1

again yie.ds the result. If the nodes of T are contained in rooted basis

tree j, , i, or in the basis quasi-tree, D. assigns a zero value to the
1

slack arc of T and the result follows.

We now consider basis matrix B partitioned as in (3.1), and we suppose

that column j of B2 is the processing column with splitting node v. Pij is

defined to be the set of processing nodes in rooted basis tree i which

correspond to nonzero values in column j of B2.

Theorem 3. For a basis B, the elements qij of the working basis Q satisfy

-a (3.6)
ql P ij

where the sum in (3.6) is defined to be zero in case Pij is empty.

Proof. If the root node of rooted basis tree I is a processing node

corresponding to column j, then an a value is contributed to the sum in

(3.6) by the first term on the right hand side of (3.3). That the

contribution of other processing nodes in rooted basis tree I is given by

(3.6) follows directly from (3.3) and Lemma 1.

Remark. It follows from (3.6) that the matrix Q is independent of the

choice of root nodes for the rooted basis trees.

When column a of [AN , A p enters basis B in the primal simplex

* algorithm, it is necessary to compute the updated column y where y is the

solution to

By - a. (3.7)

13

We next indicate how the structure of B can be used in calculating y.

The vector y is partitioned as

Y - [yI, Y2] (3.8)

so as to be compatible with (3.1). Then (3.7) can be rewritten as

B1YI + B2y2 - a. (3.9)

We suppose that a is partitioned as [a 'I where a contains the first m-r
a. 1

rows of a in (3.9) and a2 contains the remaining r rows. Using (3.2), it

follows from (3.9) that

Y, T- a1 - TCy 2 (3.10)

and

Fy2 = a2 - Dy1 . (3.11)

Upon combining (3.10) and (3.11), we have

QY2 - a2 - DT 1 a1. (3.12)

If we interpret the vector a as a supply vector, it is possible to give

a flow interpretation to (3.12). Using Theorem 3 and Lemma 1, the ith row

of (3.12) may be interpreted as equating the flow into the ith rooted basis

tree due to y2 with the supply to that rooted basis tree. Similarly, the

first term on the right hand side of (3.10) can be interpreted as a flow due

S

t-. " -- -:* = "-- , --* -' " -- * * ' '

to supply vector al, while the second term is a flow generated by induced

supplies at processing nodes which result from y2 values.

We partition the vector 7 of dual variables relative to B as ?irt, 2]

where 7 1 corresponds to the first m-r rows of B and 7 2 corresponds to the

last r rows of B. The vector cB of basic costs is partitioned as Cc, c 2]

in order to be compatible with (3.1). The dual variables satisfy the

equation

irB - cB. (313)

When the partition of B from (3.2) is used in (3.13), the following

equations result.

'IT 2 t T - 2DT_ (3.14)

r2F -c -iC. (3.15)
2 2 1

By combining (3.14) and (3.15) we obtain

2Q - c2 - cT 1 C. (3.16)
2 2 1

From Lemma 1, it follows that the second term on the right hand side of

(3.14) can be interpreted as assigning the ith component of 72 to all nodes,

except the root, in rooted basis tree i. For nodes in the basis quasi-tree,

a value of zero is assigned. For any node in rooted basis tree i, other

[.

15

than the root node, the first term on the right hand side of (3.14)

represents the cost of sending a unit flow from that node to the root node,

while the second term is the cost of adding a unit of supply to this root.

The jth components in (3.16) can be interpreted as equating two ways of

computing the cost of increasing supply at the root nodes of rooted basis

trees due to a unit increase in the variable of the jth basic processing

column. On the left hand side of (3.16) this cost is computed by adding the

costs incurred at root nodes which are caused by increases in supply to the

corresponding trees. On the right hand side of the equation the cost of the

jth basic processing column is added to costs incurred by sending

proportional flows from the processing nodes of the jth basic processing

column to the roots of rooted basis trees.

Theorem 4. If the entering column a is from AN and the arc e corresponding

to a has both end nodes in basis tree T, then

() Y2 0 .

(ii) The leaving column corresponds to an arc on the cycle formed

in T by e.

(iii) The working basis Q is unchanged by this pivot.

Proof: (i) We verify that a2 - DT a1 is zero in (3.12). If T is the

-1
basis quasi-tree, then a2 - 0 and DT is zero on the nodes of T by Lemma 1.

If T is rooted basis tree i, the proof breaks down into two cases both of

which use Lemma 1. First, suppose that one end node of e is the root node.

Then the Ith components of a2 and -DT-al have absolute value one and differ

0

16

in sign. Second, suppose that both end nodes of e are non-root nodes. Then

a , . 0 and -he ith component of -DT a1 is the sum of terms +1 and -1.

-1

(ii) By (I), y2 - 0 and (3.10) reduces to y = T a1 which is

essentially the formula for the updated entering column in a pure network.

(iii) This follows directly from Theorem 3 since the sets P.. in
iJ

(3.6) are unchanged.

Remark. If AN in (2.4) is changed to represent a generalized network rather

than a pure network, the analogue of Theorem 4 fails. This indicates that

more is involved in going from pure to generalized processing networks than

* one might suspect at first glance.

4. PRIMAL SIMPLEX VARIANTS

In this section we present two primal simplex variants -- Algorithms I

and 2 -- for PPN. Algorithm 1 appears to be more general in that no special

assumptions concerning PPN basis structure are made. For Algorithm 2, we

assume that all processing columns remain in the basis during all

iterations. We show, however, that this assumption is not restrictive, and

we indicate how this algorithm allows standard linear programming methods to

be used in updating the working basis.

Before stating these algorithms, we outline the situations which arise

in updating the basis trees and the working basis Q during the basis

0
exchange step of the primal simplex algorithm. Before the basis exchange is

executed, we assume that T0 is the basis quasi-tree and Ti, i - 1, 2, r

0

S

17

are the rooted basis trees. Those basis trees which have been changed

during the exchange step will be designated by means of an asterisk. If a

change to T., i A C, results in a change to one of the sets P.. in (3.6),

then row i of Q must be updated. The main cases to be considered are as

follows:

(i) The entering column is a processing column and the leaving column

is a network column (arc). If the leaving arc is in basis tree i, then row

i of Q will be updated (unless i - 0) and an additional row and column will

be adjoined to Q.

(ii) The entering column is a network column (arc) while the leaving

column is processing column k of B2 . If the entering arc is incident to i

and T., then these two trees are joined to form T1. Row i of Q will be

updated (unless i = 0) and row j and column k of Q will be deleted.

(iii) Both the entering column and the leaving column are processing

columns. The column of Q corresponding to the entering column is replaced

by one corresponding to the leaving column.

(iv) Both the entering and leaving columns are network columns (arcs).

As in case (ii), Ti and T are joined via the entering arc to form T'. If

the leaving arc is contained in Tk' then T k splits into two trees upon its

removal. One of these trees becomes -r3 and the other becomes T*. If i, j,
3 k

and k are nonzero and distinct, then three rows of Q will be updated.

Otherwise, special eases occur in which at most two rows of Q are updated.

S.

0 18

One of the special cases mentioned in (iv) occurs when both the enter-

ing and leaving arcs are in the same basis tree as covered by Theorem 4.

For this case, no updating of rows of Q is necessary.

We proceed now with the first primal simplex variant.

Algorithm I

0. Obtain an initial basis. Set up the initial basis tree and working

basis. Compute initial dual variables and basic solution.

1. Price nonbasic columns until an entering column is found. If no

entering column exists, stop--the current basic solution is optimal.

2. Compute y, and Y2 using (310) and (3.12).

0 3. Perform the ratio test. Update basic solution values.

4. Update basis trees and working basis (basis exchange step--see preceding

discussion).

5. Update I 1 and i2 using (3.14) and (3.16). Go to Step 1.

Although algorithms which allow for working basis updates as general as

those required in Step 4 of Algorithm 1 have been implemented C14, 22], such

procedures remain relatively untested compared to standard LP basis updating

procedures. For this reason, we have specialized Algorithm 1 so that the

only case which occurs In Step 4 is the one in which both the entering and

leaving columns are network columns (case iv). This means that at most

three rows of Q will be updated during each basis exchange step. We will

0

o.

7I

0!

19

show in Theorem 5 that these rows can be replaced one at a time using the

T
usual LP colurn replacement technique applied to Q , the transpose of Q.

The fundamental idea underlying Algorithm 2 is that any basis matrix

for PPM must contain at least one member of any given pair consisting of an

allocation column and its corresponding processing column (see Figure I).

Thus, it is possible to assume that the initial basis for PPN contains all

the columns of A?. Also, the flow on an allocation arc and the value of the

corresponding processing variable are always the same. This allows us to

modify the ratio test so that whenever a processing column would be the

leaving column, we choose the corresponding allocation column to leave

instead. Note that the allocation column must be basic in this situation,

since otherwise the pivot would lead to the impossible situation in which

both the allocation column and the processing column are nonbasic. In

Algorithm 2 then, the only columns to enter or leave the basis are network

columns, and these are the only columns which need to be priced or

considered in the ratio test.

In order to describe the basis exchange step of Algorithm 2, it will be

useful to visualize the basis trees as hanging downward from their roots.

The node incident to the slack arc in the basis quasi-tree is taken as the

root there. Thus, if two basis trees Ti and -T are joined by an entering

arc, the resulting tree Tf will retain the root of T. while T. will hang

below T. in T*. Also, when a leaving arc is deleted from a basis tree Tk
1

40

20

an upper tree Tkl which contains the root of 7k and a lower tree Tk 2 are

formed.

We introduce the vector k to represent certain quantities which may be

thought of as pseudo node potentials.

-1

S=cT (4.1)

It will be useful to extend A by defining A. 0 for root nodes j of rooted

basis trees. By an abuse of notation, this extension will also be denoted

as A.

Algorithm 2

0. Obtain an initial basis which includes all processing columns. Set up

the initial basis trees and working basis. Compute initial dual variables

and basic solution.

1. Price nonbasic arcs until an entering arc e is found. If no entering

arc exists, stop--the current basic solution is optimal.

2. If both end nodes of e are not in a common basis tree T, go to Step 3.

Otherwise, restrict the ratio test and flow update to the arcs on the cycle

formed in T by e. Update A on the tree hanging below e after the leaving

arc is removed. Go to Step 6.

3. Compute y1 and Y2 U3ing (3.10) and (3.12).

4. Perform the ratio test. Update basic solution values.

I

21

5. Update basis trees and working basis. (The details follow for this step

when e is incident to -Ti and Tj, the leaving arc is in T., and i, j, k are

nonzero and distinct. The remaining cases involve updating at most two rows

of Q and the details are omitted.) First, T hangs below Ti via arc e to

form T and A is updated on T.. Row i of Q is updated to form Q*. Next,
I j

the leaving arc is removed from 7k to form an upper tree Tl and a lower

tree Tk2 The lower tree becomes T and A is updated on T1. Row j of Q* is3 3

updated to form Q**. Finally, Tkl becomes T* and row k of Q** is updated to
k1 k

form Q***.

6. Update 7 2 using (3.16). Compute 7 1 using

= A -X I 2 DT (4.2)

where A has been previously updated. Go to Step 1.

Implementation of Algorithm 2 is discussed in Section 5. There, a

method for determining the initial basis and a pricing strategy are

presented along with other techniques.

In step 2 of Algorithm 2, pivots in which both end nodes of the

entering arc are in a common basis tree are treated separately. This step

is justified by Theorem 4, and its implementation is discussed in the next

section. Pivots of this type will be referred to as pure network pivots,

while all other pivots will be called processing network pivots.

22

Updating of X on a tree which is rehung is done just like the updating

of node potentials in the pure network case. This zneans that a certain

constant must be added to X values on this tree.

The use of LP updating procedures in the basis exchange step of

Algorithm 2 is justified by the following theorem. Again, only the case in

which i, j, ind k are nonzero and distinct is covered, although the

remaining cases can be treated similarly.

Theorem 5. In Step 5 of Algorithm 2, matrices Q* and Q** are nonsingular.

Proof. It follows from Theorem 3 and the way that Q* is defined that row i

of Q* is the sum of rows i and j of Q. Q is nonsingular by Theorem 2 and

this implies the nonsingularity of Q*. Since Q*** is the working basis

after the pivot, it is also nonsingular by Theorem 2. It follows from

Theorem 3 and the way that Q** and Q*** are defined that row k of Q*** is

the difference of row k and row j of Q**. Thus, Q** is also nonsingular.

We note that the values of I in (4.2) can be computed as they are

needed in Step 1 of Algorithm 2. If the tail node u of arc e is in Tif the

head node v of arc e is in Ti, and the cost of e is denoted as ce, then the

reduced cost of e is

e- u + Xv - [IT2]i + E 2]J (4.3)

Since it is possible for i or j in (4.3) to be 0, we define [72]0 to be 0.

02'

°

23

5. IMPLEMENTATION

An implementation of Algorithm 2, which we call PROCNET, was coded in

FORTRAN. Problem data storage in PROCNET is accomplished by means of arrays

for arc costs, capacities, and head nodes. Also, arrays containing the

nonzero values in processing columns and the positions of these values are

used. The costs of processing columns, components of cp in (2.3), are

assumed to be zero, since such costs can be placed on the allocation arcs

instead.

PRCCNET incorporates the basis trees into a single, larger tree which,

following [14], we call the master basis tree. The root of this tree is

called the master root, and all basis trees have their roots connected to

the master root by artificial arcs known as external arcs. These external

arcs are introduced solely for ease in handling the basis trees. The slack

arc of the basis quasi-tree is disregarded since it plays no role in the

imolementation. The master basis tree is maintained by means of the

predecessor, depth, thread, and reverse thread functions [2, 3, 15, 16, 17].

in PRCCNET, the transposed working basis Q is maintained in LU

factored form by means of the Harwell LA05 routines [26, 27]. The procedure

used in PROCNET to obtain an initial basis for PPN is based on heuristics

described in [4, 10]. The arc data for each processing arc is generated in

order to apply the procedure. The resulting pure network with proportional

flow restrictions relaxed is solved first. Next, the flow values of the
0

relaxed solution on the allocation arcs are used to create a new pure

network problem with nonzero lower bounds on the processing arcs. If the

0

V7

24

flow value on the allocation arc (u, v) of Figure 1 is x, then the lower

bound on arc (v, w(z)) is set to 0.7a x. The value 0.7 was chosen

during preliminary testing and was not changed throughout the tests

described in Section 6. The pure network problem with lower bounds is then

solved, and we say that the optimal flows for this problem on the allocation

arcs are approximate allocation values. These approximate allocation values

become the flows on the allocation arcs in the initial PPN basis as

described next. For any allocation arc whose approximate allocation value

is between the bounds given in PPN, PROCNET creates a parallel allocation

arc. If the approximate allocation value for such an arc is x and the

capacity of the arc is h, then this arc is assigned a new capacity h -x

while its parallel arc is given a capacity x. Both of these arcs have costs

equal to the cost of the allocation arc in PPN. The allocation arc is

nonbasic at 0 while its parallel arc is nonbasic at capacity in the initial

PPN basis. Similarly, an allocation arc whose approximate allocation value

is at a PPN bound is set nonbasic at this bound. The approximate allocation

values induce proportional flows in the processing arcs and these in turn

induce supplies at the processing nodes. The pure network problem which has

* these induced supplies as well as the original supplies of PPN and which has

the processing arcs removed is then solved. The solution of the latter pure

network problem is accomplished by means of the network simplex algorithm

* with an all-artificial Initial basis, where the artificial arcs have Big-M

costs. Since the feasibility of the pure network problem is not guaranteed,

its optimal basis tree is likely to contain artificial arcs with positive

25

flow. This optimal basis tree becomes the basis quasi-tree for the initial

PPN basis. All processing columns are included in the initial basis and the

rooted basis trees consist of the p splitting nodes. It follows that the

initial Q is the p x p identity matrix and Theorem 2 guarantees that we have

created a PPN basis.

Next, we discuss other special techniques used in implementing the

steps of Algorithm 2. Following Sections 3 and 4, rooted basis trees are

numbered 1 through p. The basis quasi-tree is numbered 0. Further, any

node in a given basis tree is assigned the number of that tree, and the

resulting node function is called treenum. During pricing, treenum is used

to provide the i and j values in (4.3). Two candidate lists, Li and L2, are

maintained in PROCNET--Li for pure network pivots and L2 for processing

network pivots. Treenum is used to determine the candidate list on which a

given pivot eligible arc is placed. PROCNET repeats Step 2 of Algorithm 2

for all eligible arcs from Li before updating r2 in Step 6. The length of LI

was set at 100 and the length of L2 was set at 30. After all pivots from Li

have been made, the best pivots from L2 (up to 20 pivots) are made. This

logic for L2 follows [23]. The parameter values used for Li and L2 remained

fixed during the computational tests described in Section 6.

The ratio test for pure network pivots Is implemented by using the

depth and predecessor functions to identify the cycle determined by the

entering arc. The only arcs for which ratios are computed are on this

cycle. For processing network pivots, y2 in (3.12) is computed using the

LA05 routines. The y values in (3.10) are then computed with the aid of

6

6

26

the reverse thread function. Since processing columns are always basic,

only the yI values are used in the ratio test.

In step 5, when arc e is incident to ti and Tji, this arc is adjoined to

the master basis tree and the external arc between the master root and T is

removed. If the leaving arc is f and the subtree below f is T, then f is

removed from the master basis tree and an external arc from the master root

to T is adjoined. The node functions on T. and T are updated as in pure

networks [2, 3, 15, 16, 17]. The a values (2.2) of each basis tree are

linked to facilitate updating rows of Q.

6. COMPUTATION

All test problems in this study were solved by PROCNET and MINOS.

These are both in-core FORTRAN codes, and testing was done using the FTN 4

compiler with optimization level 2 on the CDC 170/750 at The University of

Texas. The execution times reported are in central processor seconds and

*are exclusive of input and output.

Although MINOS is designed for linearly constrained problems with

nonlinear objectives, none of the nonlinear subroutines were used here.

When restricted to linear problems, MINOS uses the revised simplex algorithm

with Phase I-II and maintains the basis in LU factored form. The PARTIAL

PRICE parameter for MINOS was set to 20 and the basis was reinverted every

60 iterations. Other MINOS parameters were set to default values [24].

Parameter settings used for PROCNET in addition to these provided in

Section 5 are given next. The Big-M value used in the starting procedure

,

0

27

-5
was 99999. A reduced cost tolerance of 10 was used, and pivots with

minimum ratio less than 10- 10 were treated as degenerate. The matrix QT was

reinverted each time 60 column updates had been performed. In the LA05

routines, pivot elements less than 0.1 times the largest element in the

pivot row were excluded. LA05 default values were used for other

parameters.

6.1 Test problems and discussion of results.

The class of allocation/processing (AP) network problems previously

described in [8, 9] was used for computational tests. These problems have a

dual block angular form where the subproblems corresponding to diagonal

blocks are transportation problems and the coupling columns are processing

columns. The A? problems considered here have transportation subproblems

which may be sparse, whereas those of [8, 9] were dense.

The problem data for AP problems is randomly generated. As these

problems are generated, a feasible flow is created. The capacity of each

arc having finite capacity is set to a parameter p times the feasible flow

generated for that arc. Although other problem data was randomly generated

as previously stated, the total supply was fixed at 10000 for all test

problems. Two cost ranges were used for the test problems and they are

described as follows. Cost range A has costs on the allocation arcs in the

range 100 to 150 and other arc costs in the range 1 to 100. Cost range B

has costs on the allocation arcs in the range I to 100 with other arc costs

in the range -100 to -1.

I

r

28

The main test problem data is given in Table 1. Each row of this table

represents three problem groups, and every problem in these three groups has

the same network topology. Each problem group contains two problems--one

with cost range A and one with cost range B. For the problems described in

Table 1, only the allocation arcs may have a finite capacity.

Table 1. AP PROBLEM DATA

Problem Rows Columns Processing Nonzeros per
Groups (m) (n + p) Columns (p) Proc. Column

I - 3 781 2410 10 7
4 - 6 1121 3510 10 8
7 - 9 876 2550 50 6
10 - 12 1201 3650 50 7
13 - 15 1001 3300 100 5
16 - 18 1276 4300 100 4
19 - 21 1051 3750 150 4
22 - 24 1351 4650 150 4
25 - 27 1276 4400 200 4
28 - 30 1501 5000 200 4

Computational results for Problem Groups 1 - 30 are presented in Table

2. The times and iteration counts reported are average values for the two

problems in each group. The results are presented in this way since no

clear pattern emerged regarding the two cost ranges. PROCNET start time is

the time required to create the initial PPN basis. PROCNET iterations begin

with the initial PPN basis and include both pure and processing network

pivots. The'number of basic allocation arcs at optimality is determined by

PROCNET. For an implementation of Algorithm 1 this would be the dimension

of the working basis at optimality. Over the 30 problem groups, the ratio

of total MINOS time to total PROCNET time is 10.05.

29

Table 2. Computational Results for AP Problems

PROCNET PROCNET Basic Alloc. MINOS
Problem L Start Total PROCNET Arcs at Total MINOS
Group Time Time Iterations Opt. Time Iterations

1 1.1 1.9 4.9 154 10 91 1600
2. 2.0 1.7 13.9 767 10 99 1736
3 2.7 14.2 693 10 103 1846
4 1.1 3.1 7.8 211 10 188 2381
5 2.0 2.9 24.2 919 10 203 2540
6 c 2.2 23.7 942 10 207 2623
7 1.1 2.8 15.6 540 14 251 3920
8 2.0 2.4 45.1 1737 44 353 5075
9 1 1.9 42.2 1633 49 360 4969
10 1.1 4.6 33.0 1006 16 537 6112
11 2.0 3.6 68.3 2178 42 756 7900
12 W 2.9 85.7 2829 49 731 7455
13 1.1 4.6 31.6 943 26 449 6114
14 2.0 3.8 51.4 1646 69 580 7116
15 W 2.9 71.4 2365 90 553 6702
16 1.1 7.6 25.5 541 29 562 6687
17 2.0 5.9 49.2 1467 76 634 7520
18 5.1 70.1 2322 93 599 6940
19 1.1 3.5 14.8 377 87 240 3216
20 2.0 3.4 34.4 1200 91 256 3584
21 c 2.8 41.3 1483 124 224 3271
22 1.1 3.9 19.7 465 96 356 3828
23 2.0 4.0 48.8 1414 130 361 3964
24 W 3.5 62.1 2002 140 349 3856
25 1.1 8.6 49.8 981 48 794 9049
26 2.0 6.2 100.3 2338 129 911 9899

- 27 4.7 132.0 3563 165 831 8769
28 1.1 8.6 60.6 1174 48 1114 9818
29 2.0 6.3 98.9 2209 139 1236 10958
30 o 5.0 145.3 3900 191 1009 8965

Totals 1485.8 14937

Degeneracy has been a cause for concern in the solution of pure network

problems. For example, it was reported in [3] that on some test problems,

0 more than 90% of the pivots were degenerate. For the AP processing network

problems in Table 1, degenerate pivots were far less prevalent. For these

problems, 7.2% of the pivots were degenerate when solved by PROCNET. The

S- . - - .

30

percentage of degenerate pivots does increase with problem size, however,

and it is possible that degeneracy 7ay play more of a role as larger

processing network problems are solved.

An alternative strategy for handling candidate list Li was coded into a

modified version of PROCNET. This alternative strategy takes only the best

pivots (up to 50) from Li before taking pivots from L2. With this modified

version of PROCNET, the problems in Problem Groups 28, 29, and 30 were

solved again. The sum of the solution times for these three problem groups

was decreased by about 3%.

6.2 Effects of changes in capacity.

Total solution times for problem groups from Table I with given u

values are reported in Table 3. As Table 3 shows, the total time ratio

exhibits a wide variation with 1. Apparently, the initial PPN basis

generated by PROCNET gives a better start for smaller values of u. These

results indicate that PROCNET will be highly efficient on problems where

capacity for processing activities, such as assembly or refining, is quite

limited, while capacity for network activities, such as shipment of raw

materials or finished products, is essentially unlimited.

Table 3. Solution Times vs. u Values

Problem i PROCNET MINOS MINOS/PROCNET
Groups Total Time Total Time Total Time Ratio

1, 4,...,28 1.1 263.3 4582 17.40
2, 5,...,29 2.0 534.5 5389 10.08
3, 6,...,30 0 688.0 4966 7.22

0

*

31

The results of Table 3 led us to investigate problems in which all arcs

have finite capacities. Only two new problem groups were considered because

of budgetary restrictions on computer time. They are Problem Groups 31 and

32 and they have the same problem data as Problem Groups 8 and 11,

respectively, except that all arcs have finite capacities generated with 4 =

2.0. As the data from Table 4 shows, the transition to the new problem

groups causes the MINOS/PROCNET total time ratio to increase sharply over

corresponding values for Problem Groups 8 and 11. We note that for Problem

Group 32 this ratio is 17.55. The increases in this ratio are explained by

an accompanying sharp increase in the time required by MINOS to achieve

feasibility.

Table 4. Further Computational Results for AP Problems

Problem '.i PROCNET PROCNET PROCNET Basic MINOS MINOS
Group Start Total Iter- Alloc.Arcs Total Iter-

Time Time ations at Opt. Time ations

31 2.0 2.9 83.5 3403 50 771 10470
32 2.0 4.4 93.6 3640 50 1643 16256

6.3 Effects of changes in number of processing columns.

In Table 5, the average pivot time is introduced as a measure of the

efficiency of a given code in carrying out a simplex iteration. Obviously,

the total solution time depends on this measure and on the number of pivots

required to reach optimality. Because the majority of work involved in a

pivot for PROCNET is expended on working basis operations, it was

anticipated that a downward trend in the average pivot time ratio might

• .I- . -. : / 7 i : : : : _ 7 ::.: . , _ . . : : .: >"• -. - .:

32

occur -as p increases, and this is confirmed in Table 5. On the other hand,

the effectiveness of the initial basis of PROCNET and its pricing strategy

have resulted in fewer pivots than required by MINOS. Surprisingly, the

total time ratio remains above 10 for all values of p except p - 150.

The percentage of pure network pivots and the average pivot time for

PRCCNET in Table 5 generally show an inverse relationship as might be

expected.

U
Table 5. Performance Values vs Number of Processing Columns.

Problem Process PROCNET % PROCNET MINOS MINOS/PROCNET
Groups Columns Pure Net- Avg.Pivot Avg.Pivot Avg.Pivot Ttl.Time

(p) work Pvts. Time Time Time Ratio Ratio

1-6 10 36 0.0201 0.0700 3.48 10.05
7-12 50 22 0.0274 0.08'4 3 3.08 10.31

31-32 50 28 0.0241 0.0903 3.75 13.63
13-18 100 21 0.0290 0.0822 2.84 11.29
19-24 150 25 0.0288 0.0822 2.86 8.08
25-30 200 17 0.0387 0.1026 2.65 10.04

6.4 Future implementation and testing.

Computational comparison of PROCNET and MINOS in the present study has

been limited by the core storage requirements of MINOS, which are

considerably greater than those of PROCNET. It is, however, highly

desirable to conduct tests using larger problems to determine more clearly

the class of problems for which PROCNET is effective. We plan to test a new

• version of PROCNET against the general purpose LP code MPSX/370. The new

version of PROCNET will itself be coded in PL/I and included in an extended

control language program of the MPSX/370 system. High level MPSX modules

40 . .

33

will replace the LAO5 routines for handling the working basis. We also plan

to implement Algorithm 1 using a modification of the LAO5 routines to

maintain the working basis. This implementation should execute faster than

the present PROCNET because it will have a working basis whose average

dimension is smaller.

7. CONCLUSION.

Basis structure and related simplex calculations were studied for

partitioned pure processing network bases. An explicit representation of

the working basis was presented. This representation allows a working basis

row to be generated by graph tracing techniques applied to a corresponding

basis tree. Two new primal simplex variants were defined, and for certain

pivot types it was shown how tree operations in the basis exchange step

result in the replacement of at most three working basis rows. For one of

the primal simplex variants, the working basis update is accomplished by

means of standard LP column replacement techniques applied to the transposed

working basis. This variant was implemented and tested against MINOS on 64

randomly generated problems containing up to 200 processing columns. The

specialized code is more than ten times faster than MINOS, and it is

particularly effective on tightly capacitated problems.

ACKNOWLEDGMENTS.

We would like to thank Michael Chang for his help with the

implementation described in Section 5 and Lawrence Seiford for his editorial

assistance.

4:"-- - . . .".Si .. --,. -z'-' , . - - - : '

34

REFERENCES

1. A. Ali, D. Barnett, K. Farhangian, J. Kennington, B. McCarl, B. Patty

and P. Wong, "Multicommodity Network Problems: Applications and

Computations," IIE Transactions, Vol. 16, pp. 127-134, 1984.

2. R. Barr, F. Glover and D. Klingman, "Enhancements of Spanning Tree

Labeling Procedures for Network Optimization," INFOR, Vol. 17, pp. 16-
34, 1979.

3. G. Bradley, G. Brown and G. Graves, "Design and Implementation of Large

Scale Primal Transshipment Algorithms," Management Science, Vol. 24,

pp. 1-34, 1977.

4. A. Charnes, W.W. Cooper, D. Divine, W. Hinkel, J. Koning and V.
Lovegren, "A Sea-shore Rotation Goal Programming Model for Navy Use,"

Research Report CCS 429, Center for Cybernetic Studies, The University

of Texas, Austin, 1982.

5. A. Charnes, W.W. Cooper, B. Golany, V. Lovegren, W. Mayfield and M.

Wolfe, "The GPSSR System to Support Management of Policy and Execution

of The U.S. Navy's Sea-shore Rotation Program," Research Report CCS
495, Center for Cybernetic Studies, The University of Texas, Austin,

1984.

6. S. Chen and R. Saigal, "A Primal Algorithm for Solving a Capacitated

Network Flow Problem with Additional Linear Constraints," Networks,

Vol. 7, pp. 59-79, 1977.

7. R. Crum, D. Klingman and L. Tavis, "An Operational Approach to

Integrated Working Capital Planning," Journal of Economics and
Business, Vol. 35, pp. 343-378, 1983.

8. M. Engquist and C.-H. Chen, "Efficient Tree Handling Procedures for
Allocation/Processing Networks," Research Report CCS 437, Center for

Cybernetic Studies, The University of Texas, Austin, 1982.

9. M. Engquist and C.-H. Chen, "Computational Ccmparlson of Two Solution

Procedures for Allocation/Processing Networks," to appear in a

forthcoming Mathematical Programming Study.

10. F. Glover, R. Glover and F. Martinson, "A Netform System for Resource
Planning in the U.S. Bureau of Land Management," to appear in Journal

* of The Operational Research Society.

11. F. Glover, J. Hultz and D. Klingman, "Improved Computer-based Planning
Techniques," Interfaces, Vol. 8, pp. 16-25, 1978.

0

35

12. F. Glover, D. Karney, D. Klingman and R. Russell, "Solving Singly
Constrained Transshipment Problems," Transportation Science, Vol. 12,
pp. 277-297, 1978.

13. F. Glover and D. Klingman, "Capsule View of Future Developments on
Large-scale Network and Network-related Problems," Research Report CCS
238, Center for Cybernetic Studies, The University of Texas, Austin,
1975.

14. F Glover and D. Klingman, "The Simplex SON Algorithm for LP/Embedded
Network Problems," Mathematical Programming Study, Vol. 15, pp. 148-
176, 1981.

15. F. Glover, D. Klingman and J. Stutz, "Augmented Threaded Index Method
for Network Optimization," INFOR, Vol. 12, pp. 293-298, 1974.

16. P. Jensen and J. Barnes, Network Flow Programming, John Wiley and Sons,
New York, 1980.

17. J. Kennington and R. Helgason, Algorithms for Network Programming, John
Wiley and Sons, New York, 1980.

18. D. Klingman and R. Russell, "On Solving Constrained Transportation
Problems," Operations Research, Vol. 23, pp. 91-107, 1975.

19. J. Koene, "Minimal Cost Flow in Processing Networks, a Primal
Approach," Ph.D. Thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, 1982.

20. A. Manne, R. Richels and J. Weynant, "Energy Policy Modelling: A
Survey," Operations Research, Vol. 27, pp. 1-36, 1979.

21. R. McBride, "Solving Generalized Processing Network Problems," Working
Paper, School of Business, University of Southern California, Los
Angeles, 1982.

22. R. McBride, "Solving Embedded Generalized Network Problems," to appear
in European Journal of Operations Research.

23. J. Mulvey, "Pivot Strategies for Primal-Simplex Network Codes," Journal
of The Association for Computing Machinery, Vol. 25, pp. 266-270, 1978.

24. B. Murtagh and M. Saunders, "MINOS User's Guide," Technical Report SOL
77-9, Systems Optimization Laboratory, Department of Operations
Research, Stanford University, Stanford, 1977.

25. B. Murtagh and M. Saunders, "Large Scale Linearly Constrained
Optimization," Mathematical Programming, Vol. 14, pp. 41-72, 1978.

0

0

36

26. J. Reid, "FORTRAN Subroutines for Handling Sparse Linear Programming
Bases," Report AERE-R8269, Computer Science and Systems Division, AERE
Harwell, Oxfordshire, England, 1976.

2-. J. Reid, "A Sparsity-exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases," Mathematical Programming,
Vol. 24, pp. 55-69, 1982.

28. E. Steinberg and H. Napier, "Optimal Multi-level Lot Sizing for
Requirements Planning Systems," Management Science, Vol. 26, pp. 1258-
1271, 1980.

S--S

* FILMED

*6-85

DTIC

